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J1- J2 square lattice antiferromagnetism in the orbitally quenched insulator MoOPO4
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We report magnetic and thermodynamic properties of a 4d1 (Mo5+) magnetic insulator MoOPO4 single crystal,
which realizes a J1-J2 Heisenberg spin-1/2 model on a stacked square lattice. The specific-heat measurements
show a magnetic transition at 16 K which is also confirmed by magnetic susceptibility, ESR, and neutron
diffraction measurements. Magnetic entropy deduced from the specific heat corresponds to a two-level degree of
freedom per Mo5+ ion, and the effective moment from the susceptibility corresponds to the spin-only value. Using
ab initio quantum chemistry calculations, we demonstrate that the Mo5+ ion hosts a purely spin-1/2 magnetic
moment, indicating negligible effects of spin-orbit interaction. The quenched orbital moments originate from the
large displacement of Mo ions inside the MoO6 octahedra along the apical direction. The ground state is shown
by neutron diffraction to support a collinear Néel-type magnetic order, and a spin-flop transition is observed
around an applied magnetic field of 3.5 T. The magnetic phase diagram is reproduced by a mean-field calculation
assuming a small easy-axis anisotropy in the exchange interactions. Our results suggest 4d molybdates as an
alternative playground to search for model quantum magnets.
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I. INTRODUCTION

The 4d transition-metal oxides naturally bridge the two
different regimes of the strongly correlated 3d compounds
and the 5d compounds with strong spin-orbit coupling (SOC)
[1]. To what extent the 4d compounds represent either regime
or display original properties is largely an open question of
current interest [2]. Most notably, for instance, it is intriguing
that seemingly similar Ca2RuO4 and Sr2RuO4 display totally
different behaviors: the former is a Mott insulator [3–6],
while the latter is a metal and becomes superconducting at
low temperature [5–8]. Despite great interest, however, purely
4d quantum (spin-1/2) magnets are rather rare [9–12] as the
electronic structure is often complicated by the presence of
other types of 3d or 4f magnetic orbitals [13].

Among the few known 4d1 magnets [9,11,12] the molyb-
denum phosphate MoOPO4 is reported [14]. The MoO6

octahedra with Mo5+ ions are corner shared to form a chain
along the crystallographic c axis of the tetragonal structure
[Fig. 1(a)], and these chains are further coupled to each
other via corner sharing PO4 tetrahedra [Fig. 1(b)] [14,15].
Previous susceptibility data on a powder sample of MoOPO4

shows a Curie-Weiss behavior with antiferromagnetic �CW =
−14.5 K and a magnetic transition at 18 K [16]. The 31P
NMR on a powder evidences a substantial exchange through
the PO4 tetrahedra, and a sharp powder ESR line infers a
rather isotropic g factor [16]. However, so far there have not
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been any studies on the magnetic structure in the ordered
state or magnetic properties of a single crystal. Moreover,
any discussion on the possible interplay between the crystal
electric field and SOC is absent.

Here we report the magnetic and thermodynamic properties
of a MoOPO4 single crystal using specific heat, susceptibility,
magnetization, ESR, and neutron diffraction experiments. We
also elucidate the electronic states and magnetic aspects in
light of SOC and crystal-field effects, with the help of ab initio
quantum-chemistry calculations.

II. EXPERIMENTAL DETAILS

High-quality single crystals of MoOPO4 were grown
following the procedure described in Ref. [14]. H2MoO4

was mixed with concentrated phosphoric acid and heated
up to 1000 ◦C for reaction in an open platinum crucible.
After being cooled to room temperature, the resulting dark-
blue solid was dissolved in a large amount of hot water.
The yellow transparent crystals were obtained in a platelike
shape [Fig. 1(c)]. Large crystals have a typical dimension
of 3 × 2 × 0.4 mm3 with the c axis normal to the plate.
The crystal belongs to the space group P 4/n, with lattice
parameters of a = b = 6.2044 Å and c = 4.3003 Å, obtained
by single-crystal x-ray diffraction, in agreement with Ref. [14].

Specific heat was measured using a physical properties
measurement system (PPMS, Quantum Design, Inc.), and
magnetization was measured using a magnetic properties
measurement system (MPMS, Quantum Design, Inc.). ESR
measurements were performed using a Bruker X-band spec-
trometer with a TE102 resonant cavity around 9.4 GHz.

2469-9950/2017/96(2)/024445(8) 024445-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.024445


L. YANG et al. PHYSICAL REVIEW B 96, 024445 (2017)

FIG. 1. Crystal structure of MoOPO4 projected onto (a) the ac

planes, showing a chainlike arrangement of MoO6 octahedra (yellow),
and (b) the ab planes, showing the coupling between the chains via
PO4 tetrahedra (blue). Dashed lines represent the unit cells. Possible
in-plane (J1 and J2) and out-of-plane (Jc) exchange couplings are
also shown. (c) Photograph of a representative single crystal.

Neutron diffraction experiments were performed on TRICS
and D23 beamlines at the Paul Scherrer Institute and Institut
Laue-Langevin, respectively. An incident neutron wavelength
of 2.3109 Å was employed.

III. RESULTS

A. Specific heat

Figure 2(a) shows the specific heat Cp measured from 2
to 150 K in zero field and in a magnetic field of 14 T. Cp

above 25 K for both fields is essentially the same, increasing
monotonically with increasing temperature. In zero field a
pronounced peak is found at 16.1 K, while the peak is
shifted to a slightly lower temperature of 15.4 K at 14 T.
These peaks correspond to a transition into a magnetically
long range ordered phase, as evidenced by other experimental
measurements discussed in later sections.

In order to extract the magnetic part of the specific heat Cmag

and to deduce the corresponding entropy Smag, we simulate the
lattice contribution from the high-temperature data by taking
into account the Debye and Einstein contributions. We fit the
Cp data above 30 K by a lattice-only model, Cp = CD +∑

i CE,i , where CD and CE,i represent the Debye and Einstein
terms, respectively. The Debye term is expressed as

CD = 9nDR

(
T

�D

)3 ∫ �D/T

0

x4ex

(ex − 1)2 dx, (1)

and the Einstein term is expressed as

CE = 3nER
y2ey

(ey − 1)2 , y ≡ �E/T , (2)

where R denotes the gas constant, �D and �E are the Debye
and Einstein temperatures, and nD and nE are the numbers of

FIG. 2. (a) Specific heat Cp as a function of temperature in zero
field (circles) and at 14 T (squares). The solid line represents the best
fit of the simulated lattice contribution using the Debye (dash-dotted
line) and Einstein (dotted line) terms. The inset provides an enlarged
view of the low-temperature region. (b) Left axis: magnetic part of
the specific heat Cmag divided by temperature (circles). Right axis:
the solid line is the entropy calculated from Cmag.

the corresponding modes, respectively; the sum nD + nE is the
total number of atoms per formula unit. For our purpose, we
consider that a phenomenological fit using nD , nE , �D , and
�E as free parameters is sufficient. The best fit for the zero field
was obtained when using one Debye and two Einstein terms,
which yields the characteristic temperatures �D = 1177 K,
�E,1 = 372 K, and �E,2 = 154 K and the numbers nD = 4,
nE,1 = 2, and nE,2 = 1. The solid line in Fig. 2(a) is the
best-fit result for the total lattice contribution, while the
dash-dotted and dotted lines are the corresponding Debye and
Einstein contributions, respectively. While the parameters in
the phenomenological phonon fit may not be directly physical,
they provide a parametrization of the lattice contribution to the
specific heat, which can be substracted to estimate the magnetic
specific heat.

Figure 2(b) shows the resulting Cmag/T in zero field (cir-
cles, left axis) obtained by subtracting the lattice contribution
from the measured Cp. The solid line in Fig. 2(b) plots
Smag(T ) obtained by integrating Cmag/T over temperature
(right axis). Smag(T ) is found to reach and stay at R ln 2 at
high temperatures, indicating two-level degrees of freedom.
The thin colored band in Fig. 2(b) represents the entropy range
obtained when fitting the Cp data by varying the lower bound
of temperature between 25 and 35 K to confirm the negligible
dependence of the result on the chosen fit range. A similar
analysis for the 14 T data (not shown) indicates negligible
field effects.
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FIG. 3. (a) The dc magnetic susceptibility χ (T ) in a field of H = 0.1 T applied parallel (circles) and perpendicular (squares) to the c

axis. The dashed line represents the Curie-Weiss fit for H ‖ c, and the solid line shows the high-temperature series expansion using the Padé
approximant (see the text). The inset shows an enlarged view of the low-temperature region. (b) Isothermal magnetization M(H ) for H ‖ c

(solid symbols) and H ⊥ c (open symbols) at several different temperatures. The inset plots the field derivative dM/dH versus H for H ‖ c.
(c) Magnetic phase diagram from the susceptibility (squares), specific heat (upward triangles), magnetization (circles), and neutron diffraction
(downward triangles) data. Lines are guides to the eye. The colored background represents the result from the mean-field calculations (see
text).

B. Susceptibility and magnetization

Figure 3(a) shows the dc magnetic susceptibility χ =
M/H , where M is magnetization, in a field of H = 0.1 T
applied parallel and perpendicular to the c axis. For both cases,
χ (T ) shows almost identical behavior from 300 down to 20 K.
However, for H ‖ c, χ (T ) exhibits a sharp drop toward zero as
temperature is decreased across 17 K, while the one for H ⊥ c

remains only weakly temperature dependent. This is indicative
of an antiferromagnetic transition where the ordered moments
at low temperatures are collinear to each other and parallel to
the c axis.

The nearly isotropic, high-temperature part of χ (T ) could
be well fit by the Curie-Weiss formula, χ (T ) = C/(T −
�CW ) + χ0, where �CW is the Curie-Weiss temperature and
χ0 is a temperature-independent diamagnetic and background
term that may arise from the plastic sample holder or the small
amount of grease used. The best and stable fit is obtained
in the 50–300 K range, which yields the effective moment
μeff = 1.67(1)μB per Mo5+ ion, �CW = −6(1) K, and χ0 =
2.2(1) × 10−4 emu/mol for H ‖ c and μeff = 1.69(1)μB,
�CW = −4(1) K, and χ0 = 4.6(1) × 10−4 emu/mol for H ⊥
c. The best fit for H ‖ c is shown as a dashed line in
Fig. 3(a). The negative �CW indicates that antiferromagnetic
interactions are dominant. The effective moments indicate a
spin-only value consistent with the specific-heat results.

The isothermal magnetization M(H ) for H ‖ c and H ⊥ c

at several temperatures is shown in Fig. 3(b). At 5 K, M(H )
increases slowly with the field H ‖ c up to 3 T but then sharply
increases in a narrow field range of 3–4 T until it eventually
converges to the high-temperature M(H ) data obtained at 16 or
20 K. This stepwise increase of M(H ) becomes smeared out as
temperature is increased. On the other hand, no such stepwise
behavior was observed at any temperatures for H ⊥ c. These
are typical signatures of a spin-flop transition which occurs
when the field is applied along an easy axis, along which

the ordered moments align: the spins on the two sublattices
rotate to attain components perpendicular to the applied field
direction as a result of competition between antiferromagnetic
coupling, magnetic anisotropy, and the Zeeman energy.

The magnetic phase diagram is thus mapped out by combin-
ing the above bulk magnetic and specific-heat results, as shown
in Fig. 3(c). The antiferromagnetic transition temperatures in
different fields are obtained from the peaks in χ (T ) and Cp(T ),
and the spin-flop transition fields at different temperatures are
obtained from the peak positions in the dM/dH versus H plot
[inset of Fig. 3(b)].

C. Electron spin resonance

In order to gain microscopic insight into the magnetic
properties, we have performed ESR measurements as a
function of field orientation and temperature. Figure 4(a)
plots the obtained room-temperature g factor as the field
direction is rotated by φ in the ab and ac planes. The g

factor in the ac plane shows a φ variation as large as 2%
with characteristic cos2 φ angular dependence. On the other
hand, the g factor in the ab plane remains essentially constant,
as expected from the tetragonal symmetry, within the error of
0.08%, which might have arisen from a slight misorientation
of the crystal. We obtain the g factor along the principal
axes as ga = 1.926(2) and gc = 1.889(2). The average value
g = (2ga + gc)/3 = 1.913(2) agrees with the one previously
obtained by powder ESR [17]. These g values correspond to
the effective moments of 1.64μB and 1.66μB for spin-1/2 for
H ‖ c and H ⊥ c, respectively, which are very close to the
effective moment values obtained from the Curie-Weiss fit in
the previous section.

For a system with tetragonal symmetry with short distances
between the transition-metal and ligand ions, one would expect
ga < gc [18]. However, we find an opposite structure for the g
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FIG. 4. (a) Angular dependence of the g factor at room temperature from the ESR measurements, where solid symbols are for the field
orientation varied on the ac plane and open symbols are for the field orientation varied on the ab plane. (b) Resonance field B0 (solid circles,
right axis) and linewidth �B0 (open circles, left axis) of the ESR spectrum as a function of temperature. The inset plots normalized spin
susceptibility χs(T )/χs(300 K) as a function of temperature. (c) Temperature evolution of the spectrum for B ‖ c across the transition (open
circles). The solid line is a sum of two contributions from intrinsic (dotted line) and defect (dashed line) susceptibilities. At 5 K, the data for
B ⊥ c (solid circles) are overlaid.

factor in MoOPO4, even though the orbital energy diagram for
the Mo5+ ion is expected to be similar to that of tetragonally
compressed octahedron with a stabilized dxy orbital (see Fig. 7
below). As explained in Sec. III E, the multiorbital character of
the ground state in MoOPO4 results in the observed g values.

Figure 4(b) shows the temperature dependence of the
resonance field B0 and the linewidth �B0 of the ESR spectrum.
B0 slowly decreases as temperature is lowered from 300 down
to 24 K, which may be attributed to a lattice contraction.
As temperature is further lowered below 24 K, B0 starts
increasing sharply, which indicates that a magnetic transition is
approached. Similarly, �B0 slowly decreases as temperature is
lowered down to 25 K but then starts broadening significantly
as temperature is further lowered down to 15 K due to critical
spin fluctuations. The inset of Fig. 4(b) plots the temperature
dependence of the local spin susceptibility, which is obtained
from the spectral area at each temperature normalized by
the one at 300 K, χs(T )/χs(300 K). The data could be fit
to the Curie-Weiss formula with �CW = −8.9 K, which is in
reasonable agreement with the bulk susceptibility result shown
in Fig. 3(a).

Across the transition, the ESR line changes in shape and
intensity as shown in Fig. 4(c). The line sustains a perfect
Lorentzian shape down to 16 K. On the other hand, the
line below 16 K close to the transition fits better to a
sum of two Lorentzians: one corresponds to the intrinsic
sample susceptibility, while the other may correspond to
some defects. Indeed, the ESR signal at the paramagnetic
resonance field position below 15 K corresponds to about
0.1% concentration of paramagnetic impurities. The response
below 15 K represents the summation of the possible defect
contribution and the intrinsic susceptibility. The tiny intrinsic
response below the transition temperature may represent
clusters of spins that continue to fluctuate within the ESR time
window, which essentially disappears at lower temperatures
below 14 K. At 5 K, a broad hump of weak signal is observed

around 0.27 T for B ‖ c which is absent for B ⊥ c. This signal
may correspond to an antiferromagnetic resonance.

D. Neutron diffraction

To determine the microscopic magnetic structure, we
have performed neutron diffraction measurements. Magnetic
intensity appears at the position of the k = (100) wave vector at
5 K, as shown in the rotation scan in Fig. 5(a). No appreciable
change in scattering is found close to (001) between 5 and 25 K,
as shown in Fig. 5(b). A small shoulder of the (001) reflection
is likely to originate from a closely oriented secondary grain.
A nonzero (100) reflection would be consistent with Mo spins

FIG. 5. Neutron diffraction measurements of rotation scans
through (a) (100) and (b) (001) reflections recorded at 5 and 25 K.
(c) Temperature evolution of the Bragg peak integrated intensity. The
solid line is a power-law fit I (T ) ∝ (TN − T )2β with the parameters
β = 0.23 and TN = 16.17 ± 0.06 K. (d) The (010) peak counts as a
function of magnetic field parallel to the c axis.
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FIG. 6. Schematic phase diagram of the spin-1/2 J1-J2 Heisen-
berg model on a square lattice with corresponding compounds
[12]. Different ground states are expected depending on the J2/J1

ratio as represented in the diagram, where CAF, NAF, and FM
refer to columnar antiferromagnetic, Néel antiferromagnetic, and
ferromagnetic ground states, respectively. The present compound,
MoOPO4, extends the materials investigation far into the NAF regime.

related by a spatial inversion being antiparallel. Due to the
dipolar nature of the magnetic interaction, only magnetization
perpendicular to the scattering wave vector gives a nonzero
structure factor. As no change is observed for the (001)
reflection upon cooling below TN , we can conclude that the
moments are parallel to the c axis. To verify that this is
consistent with the symmetry of the lattice and rule out any
other magnetic structures, we utilize BASIREPS [19] and outline
the results here.

The magnetic representation is decomposed into six one-
dimensional irreducible representations �ν whose resulting
basis functions are shown in Table I. Examining the results
of the irreducible magnetic representations, we find that only
�2 is consistent with our observations. These results are in
contrast to the closely related AMoO(PO4)Cl (A = K and Rb)
materials. Unlike the tilted arrangement of MoO6 octahedra

dxy

dyz,xz

dx2−y2

d3z2−r2

t2g

eg

FIG. 7. Single-particle energy-level diagram of d states in an
octahedral arrangement of the oxygen ligands (in red) and Mo ion (in
yellow) in MoOPO4.

TABLE I. Basis functions of irreducible representation �ν for
k = (100) separated into real (Re) and imaginary (Im) components
and resolved along the crystallographic axes. The two equivalent Mo1

and Mo2 ions are related by an inversion through the origin.

ν Mo1 Mo2

1 Re (0,0,1) (0,0,1)
2 Re (0,0,1) (0,0,1̄)
3 Re (1,0,0) (1,0,0)
3 Im (0,1̄,0) (0,1̄,0)
4 Re (1,0,0) (1̄,0,0)
4 Im (0,1̄,0) (0,1,0)
5 Re (1,0,0) (1,0,0)
5 Im (0,1,0) (0,1,0)
6 Re (1,0,0) (1̄,0,0)
6 Im (0,1,0) (0,1̄,0)

and PO4 tetrahedra in MoOPO4, AMoO(PO4)Cl possesses a
higher symmetry where the octahedra and tetrahedra are ar-
ranged untilted in the ab plane [20]. Powder neutron diffraction
measurements on AMoO(PO4)Cl reveal an antiferromagnetic
structure where Mo moments are instead confined to the ab

plane [12].
Figure 5(c) shows the temperature dependence of the

(100) Bragg peak integrated intensity. By fitting a power-law
dependence to the intensity, we find TN = 16.17 ± 0.06 K,
which is consistent with the magnetization and specific-
heat measurements. The order parameter exponent is found
to be β = 0.23, corresponding to the two-dimensional XY

universality class. However, dedicated measurements with
better resolution and separating critical scattering would be
needed before any conclusions could be drawn from this. In
Fig. 5(d) we show the magnetic Bragg peak intensity as a
function of applied field along the c axis recorded at 2 K. Above
3 T, we find a sharp decrease in intensity which then appears
to saturate above 5 T. The change in the Bragg peak intensity
is consistent with a spin-flop transition that is observed in
the magnetization measurements shown in Fig. 3(b). This
corresponds to a tilt of the moments by approximately 35◦
away from the c axis for the fields above 5 T.

E. Model calculations

In order to gain insight into the magnetic interactions,
we fit the experimental susceptibility shown in Fig. 3(a)
using a high-temperature series expansion [21] assuming a
J1-J2 spin-1/2 Heisenberg model on a square lattice. The
best fit [solid line in Fig. 3(a)] returns J1 = 11.4(0.4) K
and J2 = −5.2(1.0) K, corresponding to J2/J1 = −0.46. This
ratio supports a collinear Néel order for the ground state (see
Fig. 6) in agreement with the neutron diffraction result. Using
the mean-field expression for the Curie-Weiss temperature,

�CW = −S(S + 1)

3kB

∑
i=1,2

ziJi, (3)

where zi is the number of neighbors for the corresponding
couplings (4 for both J1 and J2 in the present case), the high-
temperature expansion fit yields �CW = −6.2 K, which agrees
with the value obtained from the simple Curie-Weiss fit. Next,
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we simulate the phase diagram using a mean-field calculation.
The results are presented by the colored background in
Fig. 3(c). A slight exchange anisotropy, � = 0.02, has been
introduced in the Hamiltonian,

H = J1

∑
〈i,j〉

[
Sx

i Sx
j + S

y

i S
y

j + (1 + �)Sz
i S

z
j

]

+ J2

∑
〈i,k〉

[
Sx

i Sx
k + S

y

i S
y

k + Sz
i S

z
k

]
, (4)

where 〈i,j 〉 and 〈i,k〉 refer to the nearest and the next-nearest
neighbors in the ab plane, to account for the spin-flop transition
in a spin-1/2 system where single-ion anisotropy is not
expected to be present. We note that the mean-field calculation
reproduces the temperature dependence of the spin-flop field.
From the mean-field expression for the Néel temperature,

TN = −S(S + 1)

3kB

∑
i=1,2

zi(−1)iJi, (5)

we obtain TN = 16.6(1.4) K, which is in excellent agreement
with the actual value from the experiments. In the above
analyses, we do not include Jc explicitly: although an ar-
bitrarily small Jc is necessary in the actual system to give
rise to the (three-dimensional) long-range magnetic ordering,
including this parameter in the mean-field calculation produces
an insignificant change in the phase diagram. In addition,
Jc connects only two neighbors instead of the four of the
other couplings in the ab plane, and thus its effect should be
correspondingly weaker.

Our methods of analysis do not necessarily select the best
model, but rather test the validity and consistency of a proposed
one. For instance, ferromagnetic Jc comparable in strength
to antiferromagnetic J1, with negligible J2, may similarly
reproduce our experimental data. However, the ground-state
wave function from our ab initio quantum-chemistry calcula-
tions (see the next section) indicates zero contribution from
the out-of-plane orbitals and thus no direct virtual hopping
channels for Jc to be appreciable, in contrast to the other
coupling on the ab plane.

With strong ferromagnetic second-nearest-neighbor inter-
actions, MoOPO4 populates a region of the J1-J2 phase
diagram which has so far seen rather few investigations (see
Fig. 6). In the context of (π,0) zone-boundary anomalies on
the square lattice, linear spin-wave theory would for MoOPO4

predict a dispersion with significantly higher energy at (π,0)
than at (π/2,π/2), opposite the case of weak antiferromagnetic
J2 in Cu(pz)2(ClO4)2 [22]. Compared to the 39% reduction in
ordered moment due to quantum fluctuations for the nearest-
neighbor Heisenberg model, the estimate for J2/J1 = −0.46
is only a 24% reduction of the ordered moment. Adding
the weak anisotropy for MoOPO4 yields a 21% reduction in
ordered moment. Hence quantum fluctuations are likely much
weaker in MoOPO4 than in, e.g., Cu(DCOO)2 · 4D2O, called
CFTD for short [23–26] or Sr2CuTeO6 [27], and it would be
interesting in future investigations to examine whether this
leads to a similar suppression of the quantum dispersion and
continuum around (π,0).

TABLE II. Relative energies of d-level states of the Mo5+ ion
obtained from CASSCF/NEVPT2 calculations. The corresponding
wave functions without (coefficients) and with (weights) SOC at
the CASSCF level are also provided, where the up and down arrows
signify the Sz values of + 1

2 and − 1
2 , respectively [41]. At the NEVPT2

level, the wave function would also contain contributions from the
inactive and virtual orbitals. For simplicity only the weights of the
SOC wave function are provided as the coefficients are complex.

t1
2g States Relative Wave function (CASSCF)

without SOC energies (eV) coefficients

|φ0〉 0 0.95 |xy〉 − 0.32 |x2 − y2〉
|φ1〉 1.79 0.98 |yz〉 + 0.21 |zx〉
|φ2〉 1.79 0.21 |yz〉 − 0.98 |zx〉
|φ3〉 3.68 0.32 |xy〉 + 0.95 |x2 − y2〉
|φ4〉 4.42 1.00 |z2〉
t1
2g States Relative Wave function (CASSCF)

with SOC energy (eV) normalized weights (%)

|ψ0〉 0 86.0 |φ0, ↑〉 + 14.0|φ0, ↓〉
|ψ1〉 1.75 50.0 |φ1, ↑〉 + 50.0 |φ2, ↓〉
|ψ2〉 1.82 46.0 |φ1, ↑〉 + 46.0 |φ2, ↑〉

+4.0 |φ1, ↓〉 + 4.0 |φ2, ↓〉
|ψ3〉 3.70 88.0 |φ3, ↑〉 + 12.0 |φ3, ↓〉
|ψ4〉 4.44 100.0 |φ4〉

F. Ab initio calculations

An interesting feature in MoOPO4 is that the axial position
of the Mo4+ ion inside the MoO6 octahedron is heavily shifted
such that the short and long distances to the apical oxygens
are 1.652 and 2.641 Å, respectively. As a consequence, the
octahedral symmetry around the Mo ion is reduced, resulting
in the removal of octahedral orbital degeneracies and an
orbitally mixed electronic ground state. To elucidate the
electronic levels of the Mo5+ ion in low-symmetry crystal
fields in MoOPO4, we performed ab initio quantum-chemistry
calculations using the cluster-in-embedding formalism [28].
A cluster of a single active MoO6 octahedron along with
surrounding nearest-neighbor (NN) PO4 tetrahedra within the
plane and the out-of-plane MoO6 octahedra embedded in an
array of point charges that reproduces the effect of the solid
environment [29] was considered for many-body calculations.
The NN polyhedra were included within the cluster region
to better describe the charge density within the active MoO6

region. Such calculations have provided excellent insights into
the interplay of crystal field and SOC effects for several 4d

and 5d transition-metal compounds [30–33].
A perfect octahedral arrangement of the oxygen ligands

around the transition-metal ion splits the d levels into high-
energy eg and low-energy t2g manifolds (see Fig. 7). In
MoOPO4, the low-symmetry crystal fields further split the
t2g and eg levels of the Mo5+ ion, resulting in an orbital singlet
ground state. In Table II the ground-state wave function and the
d-d excitations of the Mo5+ ion are summarized. These were
obtained from many-body multiconfigurational self-consistent
field (MCSCF) [34] and N -electron valence-state perturbation
theory (NEVPT2) [35] calculations for the atoms in the active
cluster region. All-electron Douglas-Kroll-Hess (DKH) basis
sets of triple-zeta quality [36] were used to represent the
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TABLE III. Computed g factors of MoOPO4 at the NEVPT2
level of theory. The ground-state multiconfiguration wave function as
shown in Table II produces the correct structure for the g factors.

CASSCF ga gc

active orbital space

t2g 1.91 1.99
t2g + eg 1.92 1.84

Mo and oxygen ions in the central MoO6 octahedron, and
for the Mo and P ions in the NN polyhedra we employed
effective core potentials [37,38] with valence triple-zeta [37]
and a single basis function, respectively. The oxygen ions
corresponding to the NN MoO6 and PO4 polyhedra were
expanded in two s and one p atomic natural orbital type [39]
functions. All the calculations were performed using the ORCA

quantum-chemistry package [40].
In the complete active space formalism of the MCSCF

(CASSCF) calculation, a self-consistent wave function was
constructed with an active space of one electron in five Mo
d orbitals. On top of the CASSCF wave function, NEVPT2
was applied to capture the dynamic electronic correlation.
Table II shows that the ground state is predominantly of dxy

character but has significant contributions from the dx2−y2

orbital. The first orbital excitations are nearly degenerate at
1.79 eV and are composed of dyz- and dzx-like orbitals. This
scenario is in contrast to the situation in other t2g-active class
of compounds with regular transition-metal oxygen octahedra
where the t2g manifold remains degenerate with an effective
orbital angular momentum l̃ = 1. In the latter scenario the
spin-orbit interaction admixes all the t2g states to give rise to
a total angular momentum Jeff ground state [42,43]. Due to
the large noncubic crystal-field splittings in the t2g manifold in
MoOPO4, the spin-orbit interaction has a negligible effect on
the Mo5+ ground state ψ0 (see the with SOC results in Table II).
However, the orbital angular momentum is unquenched in
dzx and dyz, and hence the SOC results in the splitting of
the high-energy states ψ1 and ψ2. Our calculations result in
excitation energies of 3.68 and 4.42 eV into the eg states.

To understand the unusual structure of g factors deduced
from the ESR experiments, we computed them from the
ab initio wave function as implemented in ORCA [44]. In
Table III, the g factors obtained from CASSCF calculations
with two different active orbital spaces, only t2g and t2g + eg ,

are presented. With only t2g orbitals in the active space, we
find ga < gc as expected for tetragonal symmetry with the
dxy-like orbital occupied in the ground state. By enlarging the
active space, the wave function now contains configurations
involving the eg orbitals as well, and this is crucial to produce
the experimentally observed g factors with ga > gc.

IV. CONCLUSION

We have shown with a variety of experimental and
computational techniques that MoOPO4 realizes a spin-1/2
magnetic system of 4d1 electrons, with the quenched orbital
moment due to the large displacement of the Mo ions inside
the MoO6 octahedra. The magnetic ground state supports a
Néel-type collinear staggered order on the square lattice with
the moments pointing normal to the plane, while the moments
align ferromagnetically along the stacking axis. The compound
likely realizes a spin-1/2 Heisenberg model on a J1-J2 square
lattice, with an unfrustrated configuration of antiferromagnetic
J1 and ferromagnetic J2, while a small interlayer coupling
Jc would lead to the observed magnetic ordering transition.
The spin-flop transition suggests a small easy-axis anisotropy
in the dominant antiferromagnetic exchange, and the mean-
field calculation reproduces the experimental magnetic phase
diagram. The small anisotropy in the g factor observed in ESR,
which is reproduced by the quantum-chemistry calculations,
indicates that the ground state involves the higher-energy eg

orbitals in addition to the t2g orbitals. Our results suggest that
4d molybdates provide an alternative playground to search for
model quantum magnets other than 3d compounds.
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