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The transition metal tellurium oxychloride, Ni5�TeO3�4Cl2, has been investigated by high-field electron-spin
resonance for frequencies up to 3 THz, at temperatures well below the magnetic ordering at 23 K. At zero
external field several resonance modes have been identified. When the applied magnetic field is perpendicular
to both the a and b crystallographic directions, one of the magnetic-resonance modes softens, and a spin-flop
transition occurs around 10 T. The results are discussed in terms of the crystal structure, and compared to other
magnetically ordered materials with multiple magnetic sublattices, including orthoferrites and triangular
antiferromagnets.
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I. INTRODUCTION

Quantum fluctuations may play an important role in the
ground-state properties of a spin system of reduced dimen-
sionality or frustrated interactions, especially if the constitu-
ent spins have a low �close to spin 1/2� value.1 On the other
hand, the spin-orbit coupling, resulting in the single-ion an-
isotropy, the exchange anisotropy, the Dzyaloshinski-Moriya
interaction, or similar terms in the effective Hamiltonian,
usually introduces a gap into the magnon spectrum. Finite
magnon energies lead to less quantum fluctuations and a
more stable classical spin order. The properties of the gap
can be explored by studying the field dependence of the
electron-spin resonance. In single crystals, the field depen-
dence of the resonance frequency for magnetic field applied
in different crystallographic directions can be used to deter-
mine the nature of the spin-lattice coupling.2,3

In search for magnetic systems with reduced dimension-
ality two transition-metal tellurium oxychlorides have been
synthesized recently,4 with the general formula
Ni5�TeO3�4X2 �X=Cl,Br�. Ni5�TeO3�4Cl2, the subject of our
study, exhibits a magnetic phase transition at 23 K, and a
negative Curie-Weiss temperature ��=−50 K� in the para-
magnetic state, indicating antiferromagnetic interactions. The
nickel ions in Ni5�TeO3�4Cl2 have a 3d8 electronic configu-
ration, with spin 1, forming a quasi-two-dimensional mag-
netic structure.4 The crystal is monoclinic, of space group
C2/c with unit-cell dimensions a=19.5674 Å, b=5.2457 Å,
c=16.3084 Å, and �=125.3° �Fig. 1�.

II. EXPERIMENT

The single crystals used in this study were grown by the
usual halogen vapor transport technique, using HCl or HBr
as transport agents. The charge and growth-zone tempera-
tures were 750 and 550 °C, respectively. Orange colored,
semitransparent crystals of maximum size 10�10�0.2
mm were obtained. The stoichiometry was quantitatively

probed by electron-probe microanalysis, and the structure
was characterized by x-ray diffraction. The electron spin
resonance �ESR� measurements were performed on an ori-
ented single-crystal sample of dimensions 10�3�0.2 mm.
According to the Laue diffractogram, the a and b directions

FIG. 1. �Color online� Structure of Ni5�TeO3�4Cl2. The numbers
indicate Ni-Ni distances in Å. Gray, red, and yellow colors corre-
spond to Ni, O, and Te atoms, respectively. The unit cell is outlined
in blue. Purple bonds emphasize the Ni lattice. �a� The two-
dimensional Ni5Te4O12 sheets. �b� Side view of the Ni5Te4O12

sheets. The chlorine �not shown� occupies the space between the
sheets.
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are parallel to the edges of the slab, with b along the 10-
mm side. To facilitate further discussions, we define c* as the
direction perpendicular to both a and b.

The spin-resonance measurements were performed in
transmission geometry at Stony Brook University’s high
magnetic field/infrared facility at the U12 IR beamline of the
National Synchrotron Light Source.3 The broad band
�“white”� far-IR radiation from the synchrotron was focused
to the “external source” port of the spectrometer. There was
a polarizer at the exit port of the spectrometer, and another
set of mirrors guided the light to the sample, along the ver-
tical axis of the magnet �see Fig. 2�. The light transmitted by
the sample was collected into a light pipe, and guided to the
detector, on the top of the magnet.

The light always passed through the sample in the c* di-
rection, perpendicular to the a-b plane. Two sample holders
were constructed for orienting the sample relative to the ex-
ternal static magnetic field H. For H �c* the sample holder
was simple: the sample was set flat on a horizontal disc with
a hole in the center �see Fig. 2, right inset�. The direction of
the polarization of the incident light was controlled by rotat-
ing the whole sample holder around its vertical axis. For H
in the a-b plane the sample holder had a mirror turning the
light beam horizontal at the sample, and a second mirror
reflecting it back into the vertical light pipe �see Fig. 2, left
inset�. The sample was mounted on a vertical disc, so that
either the a or the b direction was vertical. Again, the polar-
ization of the light at the sample was set to horizontal or
vertical by rotating the whole sample holder around its ver-
tical axis.5 The measurement configurations were tested by
placing an analyzer in the sample position. The polarization
state of the light was well maintained by the optics. When
referring to the direction of the polarization, we always mean
the direction of the oscillating magnetic field vector �as op-
posed to the electric field, commonly considered in optical
spectroscopy�.

Each measurement was performed with two beamsplit-
ters. A 125-�m-thick mylar beamsplitter was employed to

reach to the lowest frequencies, 8 cm−1, available with the
spectrometer. This beamsplitter has vanishing efficiency
around integer multiples of 25 cm−1, but it provides excellent
sensitivity otherwise. A Ge-coated mylar beamsplitter was
used to cover a wide range of frequencies, ranging from
15 to 120 cm−1. The absolute upper frequency limit
�120 cm−1� was due to the cold filter in the He-cooled bo-
lometer detector, but the phonon and multiphonon absorption
in the sample became also very strong above 100 cm−1. The
data were recorded at 2.5 or 3.0 K, well below 23 K, the
temperature of the magnetic ordering transition.

At each setting the field dependence of the transmitted
light was measured. In a typical measurement the sample
was cooled in zero field, and spectra were taken in 0.5-T
steps, starting at H=0 T and finishing at H=14 T. The po-
larization of the light was rotated by 90°, and the measure-
ment was repeated. Then the beamsplitter was changed in the
spectrometer and the whole procedure was repeated.

The raw transmission intensity is determined by the inci-
dent spectrum, the spectrometer transfer function, the win-
dows on the magnet, the transmission of the sample, and the
sensitivity of the detector. The transmission of the sample, in
turn, has features independent of the magnetic field
�phonons, scattering, and absorption due to impurities� and
field-dependent features �spin resonance, possibly other
phonons that are coupled to spins�.

We eliminated the field-independent properties by taking
the average of all 29 spectra belonging to different magnetic
fields at any given setting and dividing each spectrum with
the average. Figure 3 shows a set of representative �transmis-
sion� data obtained this way. Spin resonant absorption shows
up as dips in the transmission curves at certain frequencies.
The enhanced noise at the low end of the spectral range is
due to the drop of the sensitivity of the instrument. The result
is also dominated by the noise in any frequency regime when
the intensity is low due to strong phonon absorption in the

FIG. 2. �Color online� Schematic representation of the measure-
ment setup. The two sample holders are sketched in the center. The
a-b plane of the sample is either parallel �left inset� or perpendicu-
lar to �right inset� the external field. In the first case the static field
is in the a-b plane, and its direction relative to the sample was
chosen to be either parallel to a or parallel to b. The incident light
is always perpendicular to the plane of the sample. The polarization
of the light at the sample is set to parallel to a or b by rotating the
whole sample holder around its vertical axis.

FIG. 3. �Color online� Representative spectra at 2.5 K, taken
with the Ge coated mylar beamsplitter. The static field was perpen-
dicular to the a-b plane of the sample and the polarization was
parallel to a. The noise around 80 cm−1 is due to strong phonon
absorption, causing diminishing intensity in that spectral range.
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sample. The peaks and valleys and noise at 58, 70–88, and
95 cm−1 are due to the presence of phonons that are, in a
good approximation, independent of the magnetic field. At
58 and 95 cm−1 the phonons are narrow, and the intensity of
the detected light approaches zero in a narrow range of fre-
quencies only. In the 70–88-cm−1 spectral range there are
several strong phonons, totally blocking the light for a rather
wide frequency range. The phonon features exhibit strong
dependence on the polarization of the incident light. We did
not see evidence for magnetic-field-dependent phonon line
positions, as expected in multiferroic materials.6 Since we
are primarily interested in spin resonance, we did not inves-
tigate the phonons in detail.

The transmission curves were converted into two-
dimensional field-frequency maps, where the darker shades
correspond to a more intense magnetic absorption. The ad-
vantage of these maps, compared to the spectra shown in
Fig. 3, is that the weaker features are more visible to the
human eye if seen in the context of their environments. Fig-
ures 4–6 show the field-frequency maps for external field
parallel to a, b, and c*, respectively. Two polarization direc-
tions are shown for each field direction. Data taken with the
two beamsplitters look essentially similar, except for the sen-
sitivity differences in different frequency ranges.

In zero field the spin resonance depends only on the po-
larization of the light, and it is expected to be identical for
the three sets of data presented in Figs. 4–6. In practice,
there may be minor differences in the data sets, due to the
evaluation of the data. For example, if a spin-resonance
mode happens to be entirely independent of the external field
for a certain field direction �not happening here, but theoreti-
cally possible�, then our evaluation process would miss that
mode. However, the same mode would show up in the other
two data sets with fields applied in different directions, when
the mode frequency depends on the field. Also, some modes
may have vanishing �or very small� transition matrix ele-
ments in zero field. The zero-field frequency of such modes
can be determined only by extrapolation from finite field to
zero. Some of the zero-field resonance frequencies corre-
spond to degenerate modes, splitting into two resonances in
finite field. A summary of the zero-field modes is shown in
Table I.

The measurement with field and polarization along the a
direction �Fig. 4� had a slightly diminished sensitivity due
the imperfect alinement of the light beam relative to the
sample. In one data set obtained with the Ge-coated mylar
beamsplitter the data for fields larger than 12 T were cor-
rupted. Nevertheless, at least two field-dependent magnetic
resonance lines �modes 6 and 7, starting at �6=32.2 cm−1

and �7=46 cm−1� are visible in the a /a configuration. For
the other polarization �labeled a /b in the figure� the mode-6
mode is not visible at zero field, but it becomes active in
finite fields. Mode 7 is very strong. The crossover of these
two modes around 11 T is evident in both polarizations. The
frequency of mode 2 is nearly independent of the field, the
frequency of mode 3 increases with field. Mode 10 splits into
two resonances at finite field, and there is also a faint mode
that extrapolates to �9=63 cm−1 in zero field.

For field and polarization along the b direction �Fig. 5�
modes 10 and 8 �starting at �10=68.5 cm−1, �8=56 cm−1,

and �7=46 cm−1� are strong and exhibit a quasiquadratic
field dependence. There is a mode that extrapolates to �5
=29 cm−1 at zero field. This mode �mode 5� seems to be
activated as mode 3 �starting at �3=24.4 cm−1 becomes in-
active�. For field along b and polarization along a there is
another weak mode that disappears at low fields; this mode
extrapolates to �4=25.5 cm−1. The field dependence of this
mode �mode 4� makes it clearly distinct from mode 3. Mode
2 is approximately independent of the field. The most promi-
nent feature is mode 1, starting at �1=13.5 cm−1 and curving
upwards. Note that this mode actually crosses mode 2 around

FIG. 4. �Color online� Intensity maps for external field along the
a direction, for two polarizations of the incident light: parallel to a
��a�� and parallel to b ��b��. For each setting the measurement was
done with the mylar �left� and with the Ge-coated mylar �right�
beamsplitters. There was a technical problem with the data collec-
tion for the second panel from the right, and the data for fields
greater than 12 T are not valid. Lines are fits described in Appendix
A.
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5 T. There is absolutely no evidence of interaction between
these two modes, and the two modes are excited with differ-
ent polarizations. This leads to the conclusion that these
modes are orthogonal even in finite fields.

When the field is applied perpendicular to the a-b plane,
the spin order suffers a field-induced transition around 9 T
�Fig. 6�. For low fields modes 1, 2, and 6 are visible for
polarization along the a direction; modes 2, 3, 7, and 10 are
active for the other polarization direction. Modes 2 and 3
cross and interact strongly between 4 and 6 T. Mode 7 �start-
ing at �7=46 cm−1� splits upon the application of the field,
but the intensity of the lower branch disappears rapidly.

Somewhere between 9 and 10 T all modes exhibit a dra-
matic change. Mode 1, that started to soften with increasing
field, probably reaches zero frequency in this field range. The
mode is recovered in the measured field and frequency do-

main at 11 T, approaching 16 cm−1 at 14 T. New modes ap-
pear around 20 and 34 cm−1; other modes exhibit a sudden
jump in frequency. The field-induced transition seen here is
similar to the spin-flop transition well known in simple anti-
ferromagnets and will be discussed later.

In a quasiclassical picture the spin-resonance modes are
determined by the equations of motion; in the most general
case this is equivalent to finding the eigenvalues of a 2m
�2m matrix, where m is the number of sublattices. Half of
the eigenvalues are positive, corresponding to the spin-
resonance frequencies. The quantum-mechanical treatment
leads to an identical problem in the linear approximation.7

Accordingly, there are four modes in orthoferrites8 and six
modes in triangular magnets.2 In Ni5�TeO3�4Cl2 there are 20
Ni ions in the unit cell, ten on each of the two NiO sheets

FIG. 5. �Color online� Intensity maps for external field along the
b direction, for two polarizations of the incident light: parallel to a
��a�� and parallel to b ��b��. For each setting the measurement was
done with the mylar �left� and with the Ge-coated mylar �right�
beamsplitters. Lines are fits described in Appendix A.

FIG. 6. �Color online� Intensity maps for external field perpen-
dicular to the a-b plane, for two polarizations of the incident light:
parallel to a ��a�� and parallel to b ��b��. For each setting the mea-
surement was done with the mylar �left� and with the Ge-coated
mylar �right� beamsplitters. Lines are fits described in Appendix A.
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�see Fig. 1�. The coupling is expected to be weak between
the sheets, and one can focus on the exchange parameters
between the ten Ni atoms on a single sheet in the unit cell.
One can envision an antiferromagnetic structure with ten
magnetic sublattices, each one belonging to one Ni ion. The
magnetic ground state is determined by the balance of ex-
change, anisotropy and Dzyaloshinski-Moriya �DM� interac-
tions. A total of ten spin-resonance modes in this model
would be consistent with the experimental results. At least
eight of these modes can be clearly identified in the measure-
ment. Modes 1,2 and 3,6 are split pairs in zero field. Modes
7 and 10 are degenerate in zero field, but two frequencies can
be distinguished in finite fields for at least one field direction.
�Notice that the lower branch of Mode 7 loses its intensity as
the field is increased. Nevertheless, for low fields the split-
ting of the mode is beyond doubt, see Fig. 6.� The ninth
mode has �8=56 cm−1 at zero field.

Modes 4, 5 �see Fig. 5�, and 9 �see Fig. 4� appear gradu-
ally at finite fields. Even if one assumes that a mode has
exactly zero intensity in zero external field one may not con-
clude that the mode does not exist. The mode could be seen
by other methods, e.g., by neutron spectroscopy. �Perhaps the
best analogy is the k=0 optical-phonon mode in a silicon or
diamond: This mode is not seen in optical spectroscopy,
since the dipole moment of the oscillation is exactly zero by
symmetry.� Even if the ESR line transition is not forbidden
in zero field, its intensity may be very weak. Strongly field-
dependent intensity for an allowed spin-resonance mode has
been observed before, for example in the quasi-one-
dimensional helimagnet LiCu2O2.9 Therefore we cannot say
for sure if any of these modes are truly absent in zero field.
However, in two out of the three cases a correlated dimin-
ishing of intensity seems to exist in another mode: Mode 5
gains intensity as mode 3 disappears. Mode 9 and the lower
branch of mode 10 exhibits similar behavior. It is tempting to
conclude that the magnetic field induces some type of cross-
over behavior, and modes 5 and 9 are not distinct modes
existing at zero field as well. If that is true, than the tenth
mode is mode 4.

Strong phonon absorption makes the ESR studies at
higher frequencies impossible, except for a narrow frequency
range between 110 and 120 cm−1. �That range is not shown
in the figures, but no magnetic absorption was observed
here.� Do we expect to find more magnon modes at frequen-
cies above the measured range? The answer is most likely
no. For the lowest energy modes, the ESR frequency is
strongly influenced by the anisotropy; in the absence of

single-ion or exchange anisotropy these modes would be at
zero frequency. For the other modes, however, the frequency
is mostly determined by the exchange couplings. Although
we know relatively little about the microscopic parameters of
our material, the energy scale of the exchange couplings can
be estimated from the phase-transition temperature of 25 K,
and we get HE�20 cm−1. Frustrated coupling and competing
interactions can suppress the phase-transition temperature,
but it is unlikely that any given exchange energy is larger
than a few times of 20 cm−1. This sets the upper cutoff fre-
quency for the magnon modes nicely within our range of
measurement. The properties of magnets with the garnet
structure, where the magnetic order is similarly complex,
support this argument. �For example, in Mn3Al2Ge3O12, re-
cently studied by inelastic neutron scattering,10 there are
eight sublattices and magnon modes, with the highest fre-
quency mode at 8 cm−1. The phase-transition temperature of
this compound is 6.8 K.� The same conclusion can be drawn
from the model discussed below.

III. THEORY

Antiferromagnetic resonance in the presence of uniaxial
easy axis anisotropy was described by Keffer and Kittel.11 In
the simplest case there are two relevant parameters: the ex-
change field HE, characteristic of the interaction between the
spins, and the anisotropy field HA, setting the preferred spin
direction relative to the lattice. The spin-resonance frequency
in zero field is �0=��HA�HA+2HE����2HAHE, since typi-
cally HA�HE. When the external field is parallel to the easy
axis, this line splits in two, and the corresponding frequen-
cies follow �=�0±�H. In high field, at HEA=�0 /�, the ori-
entation of the spins changes in a process called the spin-flop
transition. At fields above HEA there are two new resonance
modes, one at zero frequency and the other one at �
=��H2−HEA

2 . For fields perpendicular to the easy axis one of
the modes is independent of the frequency and the other one
behaves as �=��H2+HEA

2 . Nagamiya12 treated the same
model with general �bi-axial� anisotropy, as discussed later in
greater detail. The main finding is that the zero-field mode is
split, and for fields parallel to the easy axis the magnetic-
field dependence of the two frequencies can be described, in
a good approximation for low fields, as �=�0±�H2+H1

2

�here H1 characterizes the weaker anisotropy within the
plane perpendicular to the easy axis�. The two-sublattice
model with Dzyaloshinski-Moriya �DM� interaction was

TABLE I. Zero-field modes derived form the field dependence measured in all field directions. Twofold degeneracy means that the
resonance splits into two lines in at least one field direction. The “field/polarization” entry refers to the scan where the mode was seen: The
direction of the static field and the direction of the oscillating magnetic field relative to the sample are indicated �c* is perpendicular to
directions a and b�. “HF” means that the mode is only visible at high fields, and the zero-field frequency was determined by extrapolation.

Mode 1 2 3 4 5 6 7 8 9 10

Frequency 13.5 cm−1 17.3 cm−1 24.4 cm−1 25.5 cm−1 29 cm−1 32.2 cm−1 46 cm−1 56 cm−1 63 cm−1 68.5 cm−1

Degeneracy 1 1 1 1 1 1 2 1 1 2

Field/ b/a, c* /a a/b, b/b, a/b, b/b, b/a HF b/b HF a/a, a/b HF, a/a, a/b, b/b a/b HF a/b, b/b,

polarization c* /a, c* /b c* /b b/a HF, c* /a b/b, c* /b c* /b
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treated by Seehra and Castner,13 and more recently by
Mukhin et al.14 The DM coupling also removes the zero-field
degeneracy and for fields parallel to the easy axis the mode
frequencies follow a similar expression, �=�0±�H2+H1

2,
where H1 characterizes the DM coupling, assumed to be
small here. In Turov’s review15 saturation effects are also
discussed. Saturation occurs when the external field is close
to and exceeds the exchange field. The resonance modes that
start out to be independent of frequency at low fields are the
most sensitive to saturation effects, and the frequency depen-
dence follows �=�0�1− �H /HE�2. The slow decrease of the
frequency of the �2 mode in for fields parallel to a and b
may be due to saturation effects. Herrmann8 discussed ortho-
ferrites, with a more complicated magnetic structure of four
sublattices. The Japanese school studied triangular antiferro-
magnets with six sublattices,16 as reviewed by Tanaka and
co-workers.2

In a general sense the two low-energy modes in Fig. 6
follow the behavior seen in a two-sublattice, biaxial
antiferromagnet,12 with the easy direction identified as c*.
For fields parallel to c* the frequency of mode 1 decreases,
and the frequency of mode 2 increases. For fields perpen-
dicular to c* one of the mode frequencies is approximately
independent of the field �Figs. 4 and 5�.

The observation of ten spin-resonance modes suggests
that a model Hamiltonian must deal with ten spin sublattices
in this material. The bonds between the Ni atoms have no
particular symmetries restricting the nature of the exchange
interactions. At this stage, in the absence of information
about the orientation of the spins, one cannot attempt to re-
fine all of the possible exchange parameters. Instead, we set
a limited goal: We will reduce the number of parameters as
much as possible, and we will show that the low-energy
spectrum, including the spin-flop transition, is described by a
reasonable set of exchange couplings.

We will assume that the interaction between spins sepa-
rated by the Cl layers in the structure is weak, and the system
is quasi-two-dimensional. The unit cell of a single NiO layer
is shown in Fig. 7. We introduce exchange couplings, labeled
in the order of increasing bond lengths �see also Fig. 1�, but
we will neglect the second-neighbor couplings J3 and J5. We

will also neglect the single-ion spin anisotropy that is usually
much smaller than the exchange anisotropy. The Hamiltonian
is given by

H = 	
r

�S1,rJ1
IS4,r + S3,rJ1

IS5,r + S8,rJ1
IS10,r + S6,rJ1

IS9,r

+ S1,rJ2
IS2,r + S2,rJ2

IS3,r + S7,rJ2
IS8,r + S6,rJ2

IS7,r

+ S4,rJ4
IS1,r − ay

+ S5,rJ4
IS3,r − ay

+ S8,rJ4
IS10,r − ay

+ S6,rJ4
IS9,r − ay

+ S3,rJ6
IS10,r + S5,rJ6

IS8,r + S6,rJ6
IS4,r + ax

+ S9,rJ6
IS1,r + ax

� , �1�

where r denotes the position of the unit cell, ax,y are the

nearest-neighbor lattice vectors. The JJ matrices represent the
exchange interactions; in the absence of symmetries this ten-
sor will have components representing the DM interaction as
well. This leaves us with a very large number of coupling
parameters. To simplify the model, both the symmetric17 and
the antisymmetric DM interactions are neglected, and the
principal axes of all tensors are assumed to be collinear and
coincide with the crystallographic a, b, and c* directions. In
this approximation, each exchange coupling can be repre-
sented by three numbers, Jx, Jy, Jz, the diagonal components

of tensor JJ. For the calculation of the energy spectrum at
zero wave number the exchange couplings J1 and J4 can be
merged into one effective coupling, J1�=J1+J4. This leaves
us with nine independent coupling constants.

Complex spin ground states with noncollinear spin orien-
tations are possible even in this simplified model. Searching
the full parameter space is not practical. However, the num-
ber of possible ground states is dramatically reduced if we
assume that all spins are collinear. In our case the direction
of all spins is assumed to be either parallel or antiparallel to
c*. This assumption is not entirely consistent with the experi-
ment, since the splitting of the highest energy mode in fields
along the a direction �Fig. 4� is characteristic of spin orien-
tations collinear of a. Nevertheless, the approximation was
necessary in order to make the calculation manageable, and
it is acceptable when we are interested in the field depen-
dence of the low-energy modes only.

Magnetization measurements indicate that in the ordered
state there is no ferromagnetic moment.4 Therefore the
ground-state configurations for collinear spins are limited to
four possibilities, illustrated in Fig. 8.

In the simplified Hamiltonian investigated here the diag-
onal couplings �dashed lines� are assumed to be zero. In this
approximation configuration 1 can be transformed into con-
figuration 2 by the interchange of the J6 and the J1+J4 cou-
plings. A similar equivalence transformation applies between
configurations 3 and 4. This leaves us with two inherently
different spin configurations. Each configuration places par-
ticular restrictions of the sign and anisotropy of the exchange
parameters.

A broad search of the nine-parameter space for configu-
rations 2 and 4 was performed. The magnon spectrum was
determined by diagonalizing the Hamiltonian, obtained in
the linear approximation after a Holstein-Primakoff transfor-

FIG. 7. �Color online� Ni ion network within a single layer,
viewed from the �101� direction in the crystal. Darker shades rep-
resent ions in a single unit cell. In this view the “buckling” of the Ni
ions �apparent in Fig. 1� is not visible, and the structure looks es-
pecially simple. The exchange couplings and the indices for the Ni
ions used in the model Hamiltonian are also indicated.
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mation. The details of the calculation are described in Ap-
pendix B. In selecting the possible exchange couplings we
attempted to make them the “most isotropic” i.e., we tried to

make the components of a JJ tensor equal to each other. We
quickly found that some features of the two-sublattice mod-
els appear in our model as well. For example, if only uniaxial
anisotropy was allowed, than the lowest two modes were
degenerate in zero field, �1=�2. �With no anisotropy the
lowest mode frequency was zero, as expected for a rotation-
ally invariant Hamiltonian.� Therefore it became clear that
the minimum number of parameters required to fit the ex-
periments is 5 �three exchange couplings and two anisotro-
pies�. It turns out that the minimum number of parameters
yields a surprisingly good agreement as well, at least for the
low-lying modes.

The best agreement �shown in Fig. 9, with parameters
listed in Table II� was obtained for configuration 2. The cal-
culation reproduces the zero-field frequencies, the crossover
of the three modes around 5 T, and the expected dramatic
drop of the lowest magnon frequency �a precursor to the
spin-flop transition� around 10 T. This latter feature is par-
ticularly nontrivial. In simple antiferromagnets there is a
rather strict scaling between the frequency of the zero-field
mode and the spin-flop field, yielding a much larger spin-flop
field �around 14.5 T� than the observed one.

The eigenvector belonging to the lowest-lying mode has
interesting symmetries. The spin-pairs 1,3; 4,5; 6,8; and 9,10
have identical motion in any field. In zero field, spin pairs
3,8; 1,6; 4,9; and 5,10 have exactly opposite motion. Close to
the spin-flop field the amplitude of the motion for spins 6, 7,
8 approaches zero.

According to this result, the spins responsible for the spin-
flop transition and the six low-lying modes are collinear to
the c* direction �the z direction of the reference frame used
for the exchange tensors�. The strongest coupling is isotro-

pic; the other two couplings have an “easy plane” character,
but the two planes are perpendicular to each other. The com-
bined effect of these anisotropies is an effective “easy axis”
for the coupled spin system. Notice that the spin-flop transi-
tion at relatively low fields, as observed experimentally, is
related to this feature of the exchange parameters. When we
attempted to fit the data with biaxial anisotropy for one of the
exchange couplings, we obtained much higher spin-flop
fields �with similar good agreement for the zero-field fre-
quencies�.

In summary, the electron spin resonance on this complex
material has ten modes, and each line exhibits a characteris-
tic magnetic-field dependence. Mode counting arguments
lead to the conclusion that the magnetic unit cell in the or-
dered phase is the same as the structural unit cell. The field
induced transition in the magnetic-resonance features is
analogous to the spin-flop transition well known for the two-
sublattice, easy axis antiferromagnets. The relatively small
spin-flop field in this compound is most likely related to the
fact that the dominant anisotropy in this spin system is the
result of two intersecting easy-plane anisotropies acting in

FIG. 8. �Color online� Unit cells for the four possible spin con-
figurations, numbered 1–4 on the right side. Uniaxial exchange an-
isotropy is assumed, so that all spins are collinear. Dark and light
colors correspond to the two possible spin orientations. The effec-
tive couplings strengths for the long-wavelength �q=0� magnon
modes are also shown. FIG. 9. �Color online� Experimental data merged from three

data sets shown in Fig. 6, and the theoretical results �continuous
lines�. The dashed line represents the empirical fit to the lowest
energy mode for fields higher than the spin-flop field, as described
in Appendix A.

TABLE II. Diagonal components of the exchange tensors �in
units of cm−1� belonging the curves in Fig. 9. Negative values in-
dicate ferromagnetic couplings.

J1� J2 J6

x 33.2 −26.4 −2.06

y 33.2 −15.9 −6.25

z 33.2 −26.4 −6.25
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two different exchange couplings. While the two-dimen-
sional model discussed here correctly reproduces some of the
nontrivial properties of the low-energy excitations, the model
is not complete: it is possible that the spins are not collinear,
the parameters J3 and J5 may be finite, and interlayer cou-
pling is important for the relatively high magnetic transition
temperature. Further investigations, including the determina-
tion of the magnetic structure by neutron scattering, is nec-
essary for the complete exploration of this compound.
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APPENDIX A

Motivated by the characteristic behavior of the two-
sublattice systems, as discussed above, we performed two-
parameter fits to the observed field dependencies of the reso-
nance lines. �For noninteracting spins the spin-resonance
frequency is �=�H where �=g�B /	 with g being the so-
called g factor, and �B is the Bohr magneton. For the free
spin g factor of 2 one gets �=0.934 cm−1 T−1. We will use
this coefficient to convert all fields to frequencies, and drop
the factor � from the equations.� For modes that are nearly
independent of field we used �=H0�1− �H /HE�2 represent-
ing saturation behavior.15 For modes that seem to appear as
pairs we used either �=�0±
H or, if the pair was split in
zero field, �=�0±�H2+H1

2. We attempted to fit all other

modes with two expressions, called type A and type B, re-
spectively:

� = ��
H�2 + H1
2 or � = �0 ± ��
H�2 + H1

2. �A1�

Note that in our units 
=1 �no pre-factor in H� means the
regular g factor of 2.

The empirical fits to the field dependence of the modes
are listed in Table III, and indicated in the figures by dashed
lines. Type-A and -B fits were well within the experimental
linewidth in most cases, except for the �1 mode with H0 �b,
when the type-A fit does not work. In type-B fits we fixed

=1, if possible, and H1 and �0 were the fitting parameters.
For the high-frequency modes the type-B fits were possible
only if 
�1 was allowed; in this case the three-parameter fit
is not unique, and other combinations of �0, 
 and H1 may
work equally well.

Turov15 discussed saturation effects, i.e., the behavior of
the spin-resonance lines when the applied magnetic field is
comparable to the exchange field, and all spins line up par-
allel to the external field. The typical field dependence of the
frequency obtained in this case is �=�0�1− �H /HE�2. Com-
paring this expression to the behavior of the �2 mode for
fields parallel to a or b, one obtains a saturation field of
HE=43.25 cm−1=46.3 T. This value is comparable to the ex-
change couplings obtained independently for the spin Hamil-
tonian Eq. �1�.

In the high-field regime of Fig. 6 the dotted lines repre-
sent empirical fits for the modes, corresponding to equa-
tions �=37+2H; �=13.5+H; �=33 �=10.3+H; �
=1.7�H2− �0.934�9�2.

APPENDIX B

Holstein-Primakoff transformation has been performed on
the Hamiltonian Eq. �1�. With the introduction of matrices

D2 = 
− 2J2
z 0

0 − 2J2
z � , �B1�

D3 = 
J1�
z − J6

z 0

0 J1�
z − J6

z � , �B2�

TABLE III. Empirical fits to the low-field spin-resonance modes. The numbers represent frequencies in cm−1. H denotes the magnetic
field, converted to frequency by H�cm−1�=0.934 cm−1 T−1H�T�.

Mode H0 �a H0 �b H0�a−b

�1 9.0+�4.52+H2 15.4−�1.92+H2

�2 �17.32− �0.4H�2 �17.32− �0.4H�2 15.4+�1.92+H2

�3 16.4+�82+H2 or �24.42+ �1.6H�2 16.4+�82+H2 or �24.42+ �1.6H�2 28.3−�3.92+H2

�4 HF: �25.52+H2

�5 HF: 19+�102+H2 or �292+ �1.6H�2

�6 HF: 24.2+�82+H2 or �32.22+ �1.9H�2 HF: 19.2+�132+H2−13 or �32.22+ �1.5H�2 28.3+�3.92+H2

�7 42.5−�3.52+H2 32+�142+ �1.7H�2 or �462+ �2.8H�2 46±1.7H

�8 26+�302+ �2H�2 or �562+ �2.7H�2

�9 HF: 63−H

�10 68.5±H 56.5+�122+ �2H�2 or �68.52+ �4.1H�2 �68.52+ �2H�2
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D4 = 
J1�
z − J2

z − J6
z 0

0 J1�
z − J2

z − J6
z � , �B3�

O6 = 
�J6�
x + J6�

y�/2 �J6�
x − J6�

y�/2
�J6�

x − J6�
y�/2 �J6�

x + J6�
y�/2

� , �B4�

O2 = 
�J2
x + J2

y�/2 �J2
x − J2

y�/2
�J2

x − J2
y�/2 �J2

x + J2
y�/2

� , �B5�

O1 = 
�J1
x − J1

y�/2 �J1
x + J1

y�/2
�J1

x + J1
y�/2 �J1

x − J1
y�/2

� , �B6�

the Hamiltonian can be brought to matrix form as

H = �
D4 − gh O2 0 O1 0 0 0 0 O6 0

O2 D2 − gh O2 0 0 0 0 0 0 0

0 O2 D4 − gh 0 O1 0 0 0 0 O6

O1 0 0 D3 + gh 0 O6 0 0 0 0

0 0 O1 0 D3 + gh 0 0 O6 0 0

0 0 0 O6 0 D4 + gh O2 0 O1 0

0 0 0 0 0 O2 D2 + gh O2 0 0

0 0 0 0 O6 0 O2 D4 + gh 0 O1

O6 0 0 0 0 O1 0 0 D3 − gh 0

0 0 O6 0 0 0 0 O1 0 D3 − gh

 , �B7�

where gh denotes the applied magnetic field. This matrix acts on the space of Holstein boson creation and annihilation
operators. To obtain the energy spectrum, one has to introduce the metric matrix G, composed of ±1 along the diagonal in an
alternating fashion.7 The matrix to be diagonalized is GH, whose positive eigenvalues give the energy gaps.
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